207 research outputs found

    Elevated levels of inflammatory cytokines predict survival in idiopathic and familial pulmonary arterial hypertension

    Get PDF
    BACKGROUND: Inflammation is a feature of pulmonary arterial hypertension (PAH), and increased circulating levels of cytokines are reported in patients with PAH. However, to date, no information exists on the significance of elevated cytokines or their potential as biomarkers. We sought to determine the levels of a range of cytokines in PAH and to examine their impact on survival and relationship to hemodynamic indexes. METHODS AND RESULTS: We measured levels of serum cytokines (tumor necrosis factor-alpha, interferon-gamma and interleukin-1beta, -2, -4, -5, -6, -8, -10, -12p70, and -13) using ELISAs in idiopathic and heritable PAH patients (n=60). Concurrent clinical data included hemodynamics, 6-minute walk distance, and survival time from sampling to death or transplantation. Healthy volunteers served as control subjects (n=21). PAH patients had significantly higher levels of interleukin-1beta, -2, -4, -6, -8, -10, and -12p70 and tumor necrosis factor-alpha compared with healthy control subjects. Kaplan-Meier analysis showed that levels of interleukin-6, 8, 10, and 12p70 predicted survival in patients. For example, 5-year survival with interleukin-6 levels of >9 pg/mL was 30% compared with 63% for patients with levels < or = 9 pg/mL (P=0.008). In this PAH cohort, cytokine levels were superior to traditional markers of prognosis such as 6-minute walk distance and hemodynamics. CONCLUSIONS: This study illustrates dysregulation of a broad range of inflammatory mediators in idiopathic and familial PAH and demonstrates that cytokine levels have a previously unrecognized impact on patient survival. They may prove to be useful biomarkers and provide insight into the contribution of inflammation in PAH

    Impaired natural killer cell phenotype and function in idiopathic and heritable pulmonary arterial hypertension

    Get PDF
    BACKGROUND: Beyond their role as innate immune effectors, natural killer (NK) cells are emerging as important regulators of angiogenesis and vascular remodeling. Pulmonary arterial hypertension (PAH) is characterized by severe pulmonary vascular remodeling and has long been associated with immune dysfunction. Despite this association, a role for NK cells in disease pathology has not yet been described. METHODS AND RESULTS: Analysis of whole blood lymphocytes and isolated NK cells from PAH patients revealed an expansion of the functionally defective CD56(-)/CD16(+) NK subset that was not observed in patients with chronic thromboembolic pulmonary hypertension. NK cells from PAH patients also displayed decreased levels of the activating receptor NKp46 and the killer immunoglobulin-like receptors 2DL1/S1 and 3DL1, reduced secretion of the cytokine macrophage inflammatory protein-1β, and a significant impairment in cytolytic function associated with decreased killer immunoglobulin-like receptor 3DL1 expression. Genotyping patients (n=222) and controls (n=191) for killer immunoglobulin-like receptor gene polymorphisms did not explain these observations. Rather, we show that NK cells from PAH patients exhibit increased responsiveness to transforming growth factor-β, which specifically downregulates disease-associated killer immunoglobulin-like receptors. NK cell number and cytotoxicity were similarly decreased in the monocrotaline rat and chronic hypoxia mouse models of PAH, accompanied by reduced production of interferon-γ in NK cells from hypoxic mice. NK cells from PAH patients also produced elevated quantities of matrix metalloproteinase 9, consistent with a capacity to influence vascular remodeling. CONCLUSIONS: Our work is the first to identify an impairment of NK cells in PAH and suggests a novel and substantive role for innate immunity in the pathobiology of this disease

    Log-transformation improves the prognostic value of serial NT-proBNP levels in apparently stable pulmonary arterial hypertension.

    Get PDF
    N-terminal pro B-type natriuretic peptide (NT-proBNP) is a product of cleavage of the cardiac prohormone pro B-type natriuretic peptide into its active form. It has proven to be a useful biomarker in left heart failure. However, studies examining the utility of serial measurements of NT-proBNP in pulmonary arterial hypertension (PAH) patients have shown mixed results. We compared three methods of predicting adverse clinical outcomes in PAH patients: the change in 6 minute walk distance (6MWD), the change in absolute levels of NT-proBNP and the change in log-transformed levels of NT-proBNP. All PAH patients presenting from March-June 2007 were screened. Patients who were clinically unstable, had abnormal renal function or hemoglobin levels or lacked a prior NT-proBNP were excluded. 63 patients were followed up for adverse clinical outcomes (defined as death, transplantation, hospitalisation for right heart failure, or need for increased therapy). Three methods were used to predict adverse events, i.e.: (a) comparing a 6MWD performed in March-June 2007 and a previous 6MWD. A decrease in 6MWD of ≥30m was used to predict clinical deterioration; (b) comparing a NT-proBNP value measured in March-June 2007 and a previous NT-proBNP. An increase in NT-proBNP of ≥250pg/ml was used to predict clinical deterioration (250pg/ml represented approximately 30% change from the baseline median value of NT-proBNP for this cohort); and (c) comparing the loge equivalents of two consecutive NT-proBNP values. We used the formula: loge(current NT-proBNP) - loge(previous NT-proBNP)=x. A value of x≥+0.26 was used to predict adverse events. This is equivalent to a 30% change from baseline, and hence is comparable to the chosen cut-off for absolute levels of NT-proBNP. A loge difference of ≥+0.26 identifies patients at risk of adverse events with a specificity of 98%, a sensitivity of 60%, a positive predictive value of 89%, and a negative predictive value of 90%. A drop in 6MWD of ≥30m has a specificity of 29%, a sensitivity of 73%, a positive predictive value of 24% and a negative predictive value of 24%. It seems possible to risk-stratify apparently stable PAH patients by following the changes in their serial log-transformed NT-proBNP values. In this small pilot study, this method was better than relying on changes in the actual levels of NT-proBNP or changes in 6MWD. This needs to be validated prospectively in a larger cohort

    Exercise physiological responses to drug treatments in chronic thromboembolic pulmonary hypertension

    Get PDF
    We tested the hypothesis that patients with chronic thromboembolic pulmonary hypertension (CTEPH) deemed inoperable were more likely to respond to PAH drugs than those CTEPH deemed operable, using cardiopulmonary exercise testing (CPX). We analyzed CPX data of all CTEPH patients who were treated with PAH drugs and had undergone CPX testing pre- and post-treatment at a single Pulmonary Hypertension center between February 2009 and March 2013. Suitability for pulmonary endarterectomy (PEA) was decided at a PEA expert center. The inoperable group included 16 patients and the operable group 26 patients. There was no difference in demographics and baseline hemodynamics between the groups. Unlike the operable group, after drug treatment inoperable patients had a significantly higher peak VO2 (p<0.001), workload (p=0.002) and oxygen pulse (p<0.001). In terms of gas exchange, there was an overall net trend towards improved VE/VCO2 in the inoperable group, with an increased PaCO2 (p=0.01), suggesting reduced hyperventilation. No changes were seen in the operable patients. In conclusion, treatment with PAH drug therapies reveals important pathophysiological differences between inoperable and operable CTEPH, with significant pulmonary vascular and cardiac responses in inoperable disease. Drug effects on exercise function seen in inoperable CTEPH cannot be translated to all forms of CTEPH

    Plasma Metabolomics Implicates Modified Transfer RNAs and Altered Bioenergetics in the Outcomes of Pulmonary Arterial Hypertension.

    Get PDF
    BACKGROUND: Pulmonary arterial hypertension (PAH) is a heterogeneous disorder with high mortality. METHODS: We conducted a comprehensive study of plasma metabolites using ultraperformance liquid chromatography mass spectrometry to identify patients at high risk of early death, to identify patients who respond well to treatment, and to provide novel molecular insights into disease pathogenesis. RESULTS: Fifty-three circulating metabolites distinguished well-phenotyped patients with idiopathic or heritable PAH (n=365) from healthy control subjects (n=121) after correction for multiple testing (P<7.3e-5) and confounding factors, including drug therapy, and renal and hepatic impairment. A subset of 20 of 53 metabolites also discriminated patients with PAH from disease control subjects (symptomatic patients without pulmonary hypertension, n=139). Sixty-two metabolites were prognostic in PAH, with 36 of 62 independent of established prognostic markers. Increased levels of tRNA-specific modified nucleosides (N2,N2-dimethylguanosine, N1-methylinosine), tricarboxylic acid cycle intermediates (malate, fumarate), glutamate, fatty acid acylcarnitines, tryptophan, and polyamine metabolites and decreased levels of steroids, sphingomyelins, and phosphatidylcholines distinguished patients from control subjects. The largest differences correlated with increased risk of death, and correction of several metabolites over time was associated with a better outcome. Patients who responded to calcium channel blocker therapy had metabolic profiles similar to those of healthy control subjects. CONCLUSIONS: Metabolic profiles in PAH are strongly related to survival and should be considered part of the deep phenotypic characterization of this disease. Our results support the investigation of targeted therapeutic strategies that seek to address the alterations in translational regulation and energy metabolism that characterize these patients

    Systems biology approaches applied to regenerative medicine

    Get PDF
    Systems biology is the creation of theoretical and mathematical models for the study of biological systems, as an engine for hypothesis generation and to provide context to experimental data. It is underpinned by the collection and analysis of complex datasets from different biological systems, including global gene, RNA, protein and metabolite profiles. Regenerative medicine seeks to replace or repair tissues with compromised function (for example, through injury, deficiency or pathology), in order to improve their functionality. In this paper, we will address the application of systems biology approaches to the study of regenerative medicine, with a particular focus on approaches to study modifications to the genome, transcripts and small RNAs, proteins and metabolites

    The ADAMTS13-VWF axis is dysregulated in chronic thromboembolic pulmonary hypertension

    Get PDF
    Chronic thromboembolic pulmonary hypertension (CTEPH) is an important consequence of pulmonary embolism that is associated with abnormalities in haemostasis. We investigated the ADAMTS13-von Willebrand factor (VWF) axis in CTEPH, including its relationship with disease severity, inflammation, ABO groups and ADAMTS13 genetic variants.ADAMTS13 and VWF plasma antigen levels were measured in patients with CTEPH (n=208), chronic thromboembolic disease without pulmonary hypertension (CTED) (n=35), resolved pulmonary embolism (n=28), idiopathic pulmonary arterial hypertension (n=30) and healthy controls (n=68). CTEPH genetic ABO associations and protein quantitative trait loci were investigated. ADAMTS13-VWF axis abnormalities were assessed in CTEPH and healthy control subsets by measuring ADAMTS13 activity, D-dimers and VWF multimeric size.Patients with CTEPH had decreased ADAMTS13 (adjusted β -23.4%, 95% CI -30.9- -15.1%, p<0.001) and increased VWF levels (β +75.5%, 95% CI 44.8-113%, p<0.001) compared to healthy controls. ADAMTS13 levels remained low after reversal of pulmonary hypertension by pulmonary endarterectomy surgery and were equally reduced in CTED. We identified a genetic variant near the ADAMTS13 gene associated with ADAMTS13 protein that accounted for ∼8% of the variation in levels.The ADAMTS13-VWF axis is dysregulated in CTEPH. This is unrelated to pulmonary hypertension, disease severity or markers of systemic inflammation and implicates the ADAMTS13-VWF axis in CTEPH pathobiology

    Comparison of Four ChIP-Seq Analytical Algorithms Using Rice Endosperm H3K27 Trimethylation Profiling Data

    Get PDF
    Chromatin immunoprecipitation coupled with high throughput DNA Sequencing (ChIP-Seq) has emerged as a powerful tool for genome wide profiling of the binding sites of proteins associated with DNA such as histones and transcription factors. However, no peak calling program has gained consensus acceptance by the scientific community as the preferred tool for ChIP-Seq data analysis. Analyzing the large data sets generated by ChIP-Seq studies remains highly challenging for most molecular biology laboratories
    corecore